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Abstract. The logarithm of the transfer matrix of the two-dimensional, three-state chiral 
clock model is shown to be equivalent to a one-dimensional non-Hermitian quantum 
Hamiltonian. In the region of small chirality the critical behaviour of the quantum 
model is investigated by a series expansion and by finite-size scaling. A single phase 
boundary between a modulated paramagnetic and a ferromagnetic phase is located with 
good accuracy. Both methods yield comparable results for the critical exponent of the 
wavevector of the modulated high-temperature phase. The critical exponents vx, v7 for the 
correlation lengths obtained from finite-size scaling point towards the existence of a Lifshitz 
point at finite chirality. The results of the series expansion for the exponent vx, however, 
are inconsistent with finite-size scaling. For larger chirality our finite-size results clearly 
reveal the occurrence of an incommensurate phase with algebraically decaying correlations 
between the ferromagnetic and the modulated paramagnetic phase. We analyse the critical 
behaviour of this incommensurate phase at its melting line and determine the exponent 
that controls the algebraic decay of correlations. 

1. Introduction 

Layers of adsorbed gases on crystalline substrates may exhibit commensurate and 
incommensurate ordered phases in the submonolayer regime. A well known example 
is the system H/Fe(001) which for a certain coverage forms an ordered commensurate 
(3 x 1) phase while the high-temperature phase is in an incommensurate fluid state (e.g. 
Imbihl et a1 1982). Simple considerations of the interface energies of walls between 
the three possible domains of the (3 x 1) structure have led to the conclusion that 
the appropriate Landau-Ginzburg-Wilson Hamiltonian must contain a uniaxial chiral 
term (Huse and Fisher 1982, 1984). The simplest lattice model that incorporates such 
a term is the three-state chiral clock ( cc~ )  model (Huse 1981, Ostlund 1981). Its phase 
diagram is shown schematically in figure l(a). It is well established that for sufficiently 
large chirality an incommensurate floating phase, i.e. a phase with algebraically 
decaying order parameter correlations, occurs between the ordered commensurate and 
the incommensurate fluid phase (Ostlund 1981, Centen et al 1982, Selke and Yeomans 
1982, Haldane et al 1983, Houlrik et a1 1983, Howes 1983, Schulz 1980, 1983, Duxbury 
et al 1984). The question, however, of whether the Lifshitz point (AL, TL) ,  at which the 
floating phase ends, lies at a finite value of the chirality parameter A as suggested in 
figure l(a) or whether the floating phase extends to zero chirality remains controversial. 
Of the above-quoted authors Haldane et al (1983) and Schulz (1983) predicted the 
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floating phase to intervene between the commensurate and the incommensurate phases 
for all values of A, i.e. AL = 0. The others suggest values of AL in the range 
0.3 I AL I 0.4. Apart from this controversy over a qualitative feature of the phase 
diagram of the cc3 model there are uncertainties concerning the critical properties at 
the various phase boundaries. Among the authors who agree on the existence of a 
Lifshitz point at finite A, there is no agreement about the nature of the transition from 
the ordered to the incommensurate disordered state. According to Howes (1983) the 
transition is in the Potts universality class; Huse and Fisher (1982, 1984) propose that 
it should be in a new chiral universality class and their conjecture is supported by 
numerical work of Duxbury et a1 (1984), but is questioned by recent work of Vescan 
er al (1986). 

l o 1  
I 
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I 

Ferromagnetic 
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0 1/2 A 

Figure 1. Phase diagrams of ( a )  
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the cc3 lattice model and ( b )  the Hamiltonian (2.4). 

Most of the above approaches that have led to the conflicting results about the 
disordered to commensurate transition yield no information about the nature of the 
incommensurate floating phase. The properties of this phase have, in the main, been 
deduced from a low-temperature free fermion approximation (Ostlund 198 1, Haldane 
et a1 1983). Within this approximation the array of parallel domain walls that constitute 
the incommensurate phase is assumed to be almost free of dislocations. As a result 
the floating phase should bear the characteristics of a Kosterlitz-Thouless (KT) phase 
(Kosterlitz and Thouless 1973, Kosterlitz 1974). In particular the exponent q that 
determines the spatial decay of the correlations should be non-universal q = q(T,  A). 
The melting of the floating phase should happen via a KT transition at q ( T , A )  = 1/4 
(Ostlund 1981, Haldane et a1 1983). The last assertion depends on the assumption 
that the dislocation density of the domain wall array is still low even at the melting 
temperature. This has never been checked in an independent calculation. In previous 
numerical analyses of the cc3 model (Selke and Yeomans 1982, Duxbury et a1 1984) 
no attempt has been made to determine q, so it remains an open question whether the 
melting of the floating phase does occur via a KT transition. 

In the present paper we consider the transfer matrix of the cc3 model in the 
Hamiltonian limit. In two dimensions the classical action of the more general p-state 
model is given by 
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where R = (RT, R,) denotes a point on the square lattice (figure 2) and x, z are the 
primitive lattice vectors, 1x1 = a,, It( = a7.  Without loss of generality (Ostlund 1981) 
we assume the interaction parameters K,, K ,  to be positive and the chirality parameter 
A to be in the range 0 I A I . The variables nR which take the values 0, 1, . . . , p  
define the local spin variables 

S(R)  = (cos ( $ n R )  , sin ( $ n R ) )  

Figure 2. Description of the lattice which is used for setting up the transfer matrix. 

The two-spin correlation function of the model is of the general form 

(1.3) 

where M is the ferromagnetic order parameter. The modulation along the T direction 
is induced by the chirality A. One expects the wavenumber Q to be proportional to 
A at high temperatures. The correlation lengths along the two lattice directions, (, 
and (,, will in general be different; previous investigators (Duxbury et a1 1984, Vescan 
et a1 1986) claim that there may even be anisotropic scaling in certain regions of the 
transition lines in figure l (a) .  

We consider the column-to-column transfer matrix TR,R+~ (see figure 2). Its eigen- 
values will in general be complex. The correlation length tT and the wavenumber Q of 
the correlation function (1.3) are related to the real and imaginary parts of the largest 
and the second-largest eigenvalue of the transfer matrix. 

It is known (Kogut 1979) that the transfer matrix can be represented as 

TR,R+r  = [e-yHIR,R+r (1.4) 

where y is a constant and H is a one-dimensional quantum Hamiltonian. (, and Q 
can be obtained from the eigenvalues of H with the minimal and next to minimal real 
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parts. The derivation of the proper quantum Hamiltonian for the cc3 model will be 
discussed in $2 of the paper. In $3 the critical exponents of Q and 5, are presented as 
results of a series expansion for the appropriate eigenvalues of H. Section 4 contains a 
finite-size analysis of these eigenvalues. We determine the critical exponents of Q and 
5, and, in addition, the anisotropy parameter (Kinzel and Yeomans 1981, Schaub and 
Domany 1983, Domany and Schaub 1984). In the low-chirality region this analysis 
allows a check on the results of the series expansion. For higher chirality we obtain 
the critical exponents that govern the incommensurate to commensurate transition 
and the melting transition of the floating phase. We observe that in a certain region 
of the phase diagram scaling is isotropic, i.e. 5, - 5, - N ,  so that using a proper 
redefinition of the spin variables S ( R ) ,  (1.2), the correlation function (1.3) can be cast in 
a conformally invariant form ($5). Exploiting the consequences of conformal invariance 
we then determine numerically the critical exponent t,+. In $6 we summarise and discuss 
the main results. 

2. The quantum Hamiltonian 

Various methods which lead to the formulation (1.4) of the transfer matrix have been 
proposed in the literature (Hamer er a1 1979, Kogut 1979). Here we shall briefly discuss 
two of them. 

(i) Following Kogut (1979), Marcu er a1 (1981) derive the quantum Hamiltonian 
by taking the limit K ,  + 0, K ,  + cc such that K ,  exp { K ,  [cos +nA - cos +.(A + l)] } 
remains fixed. In this limit the only non-negligible elements of TR,R+? are those 
corresponding to 

n R f r  = n R  R, = 1,. . . , N (no spin flip) (2.1 a )  

and to 

~ R , + Z  = nit, + 1 or nR,+r  = n R J  + 2 RXJ = ja, 

and (2.1 b )  
n R - t r =  n R  R #RI j = I ,  ..., N .  

In the last two cases a single spin in the column R + t deviates by one or two units 
from the adjacent spin in column R.  The corresponding matrix elements are 

exp{K,[i cos({nA) k ~ f i s i n ( ~ n A ) ] } .  (2.14 

Of these Marcu et a1 (1981) retain only the larger one as they consider the limit 
K,  + CO at a fixed value of A. In contrast we take the combined limit K ,  + 0, K ,  + CO, 

A + 0 and require that the parameters 

and 

exp[K, 3 cos({nA)] 
cosh R, ,i = K ,  (2.3) 
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remain fixed. Following the derivation of Marcu et al (1981) we then arrive at an 
expression of the type (1.4) for the transfer matrix where 

with 
1 

y = - tanh K, J5 (2.5) 

and 

0 0 0 1 0  
c = o exp(ini) o ) r = ( ;  ; A). (2.6) i: o exp(-ini) 

For the constant y in (1.4) we find 'J = 3E,/2KY. The Hamiltonian obtained by Marcu 
et a1 (1981) follows from (2.4) in the limit k, -+ E, i.e. y 4 l / &  For this case the 
model has been investigated by Vescan et a1 (1986). In the numerical analysis (see $4) 
it turned out to be convenient to work with the Hamiltonian 

where 
0 0  

0 0 exp(-iy) 

with 

(2.7a) 

(2.7b) 

lp = tan-' y ( 2 . 7 ~ )  

and 

E.' = i/JW = E, cos lp. (2.7d) 

(ii) A second approach to (1.4) starts from the observation that the original classical 
action A @ ) ,  ( l . l ) ,  may be considered as the Euclidean action of a two-dimensional 
quantum field theory on a lattice with the field variables 8 ( R )  = ( 2 n / p ) n ~  . Taking 
the continuum limit in the T direction the respective interaction term in ( 1 . 1 )  may be 
expanded for large p :  

cos ( z ( n ~ + ,  - n R  + A) ?: 1 - a,&8 sin(2lrAlp) - +:d:t?cos(21~A/p). 
P ) (2.8) 

Proceeding as in the case of the O(2) symmetric model (see Hamer et a1 1979) one 
then arrives at the following Hamiltonian in the limit of large p: 

1 
a, K ,  cos(2nAlp) Hp+= = (R,) + iK,L(Rx) sin(2nAlp) 

R,=l 

(2.9) 
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L(R,) is the angular momentum operator conjugate to Q(R,). We return to finite p by 
replacing (Elizur et al 1979) 

1 - cos (L , )  sin (L,)  
1 - cos(2n/p) sin(2n/p) 

L2 + L-* (2. I O U )  

and 

6 -+ 6, (2.10b) 

where 

[ M R A  ep(R.L)I = - ( ~ ~ Z / P ) ~ R , , R : .  (2.1 1) 

Both L, and 6, have the spectrum (2n/p)Z, where Z ,  are the integers modulo p .  For 
p = 3 we then recover the Hamiltonian (2.4). However, the relationship between the 
coupling constants K,, K ,  and the parameters i and y is different from (2.2) and (2.3): 

i. = K,K,  cos(fnA) y = K ,  sin(5nA). (2.12) 

In the above derivation we have not established (1.4) exactly but rather 

T" = constant x exp(-N,yH) (2.13) 

where N ,  = l /a,  is the number of 'time slices' into which the unit interval in the 7 

direction has been divided. Thus we have 

7 = [K ,  cos($nA)]-'. (2.14) 

There is an obvious qualitative difference between the assignments of the coupling 
constants K,, K,, A of A ( 3 )  to the parameters I., y of the Hamiltonian H following 
from the different derivations (i) and (ii). While y is found to be unbounded from 
(ii), one has 0 I y I 1 / 4  according to (i). The limit K ,  + 0 which has to be 
performed in (i) invalidates the free fermion approximation by which the existence 
of an incommensurate floating phase in the cC3 model is established (Ostlund 1981, 
Centen et a1 1982). Clearly, the picture of an array of domain walls running mostly 
parallel to the x direction so that only a few of the ferromagnetic K ,  bonds are broken 
does not apply for K ,  + 0. Thus we do not expect to find a massless phase in the 
Hamiltonian (2.4) in the parameter range 0 4 y I I / a ,  where H can be derived from 
the exact transfer matrix by procedure (i). On the other hand, the quantum model 
defined by H belongs to the same universality class as the original classical model. 
The spectrum of H must therefore reflect the entire phase diagram of the cc3 model 
including the floating phase. These arguments suggest that a Lifshitz point will be 
located at a value y~ 2 I / &  in the quantum model and that the spectrum of H is 
massless in an interval between the ferromagnetic and the disordered 
phase for y > yL . 

A few structural properties of the spectrum of H follow directly from symmetries. 
The 2 3  charge 

c 1 < 

N 

4' = q,(mod 3) (2.15) 
j =  1 



Transfer matrix of the chiral clock model 248 1 

where 

0 0 0  

0 0 2  
4 , = ( 0  1 o)J  (2.16) 

in a basis in which the matrices U, are diagonal (CJ basis), is a conserved quantity. The 
eigenvalues belonging to the three sectors 4“ = 0,1,2 will be denoted by A;) for a chain 
of N members. We shall exclusively deal with periodic boundary conditions so that 
the eigenvalues can be labelled by the wavenumber k = 2 n n / N ,  n = 0,1,. . . , N - 1. For 
physical reasons the ground-state energy Ag’(0) is real. Furthermore, since H is parity 
conserving 

Agr)(k) = [A:)(k)]’ (2.17) 

and since states with fewer nodes are lower in energy 

Re {AF’(O)} 5 Re { A F ) ( k  > 0)} m = 0,1,2. (2.18) 

The correlation length CT and the wavenumber Q which give the asymptotics of the 
correlation function (1.3) at large R, are related to the mass gap G of H and to 
I ~ { A ~ ) ( o ) )  : 

5;’ = G = lim GN = lim [Re (A$’(O)} - AE’(O)] 
N -0t N-K€ 

Q = lim QN = lim [Im {AE.)(O)}]. 
N +cc N -ra 

(2.19) 

(2.20) 

It is clear that Q will primarily depend on the parameter y which multiplies the 
non-Hermitian part of the Hamiltonian (2.4). As y -+ x, Q will grow to infinity for any 
finite value of E.. For the original lattice model Q attains its maximum value at A = i. 
Thus in the y-E. plane the phase diagram will differ from figure l (a)  in as much as the 
critical point A = 4, K ,  = 0 is shifted to infinity (see figure l(b)). 

Let us mention that for y = 0 the Hamiltonian (2.4) represents the three-state Potts 
model. H ( 0 , I )  is self-dual with respect to E. = 3 (Elizur et a1 1979). 

It should be mentioned that a different Hamiltonian representation of the cc3 
model is obtained if one starts with the row-to-row transfer matrix TR,R+~ (Centen et a1 
1982, Howes 1983). For y = 0, i.e. for the symmetric Potts model, the two Hamiltonians 
are identical. 

3. Series analysis 

The difference 

A(’)(O) - A(O’(0) = G + iQ (3.1) 

may be calculated perturbatively as a power series in I.. Note that for both assignments 
of 1 to the interaction parameters of the original cc3 model obtained in $2, A + 0 as 
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K ,  -+ 0. Hence the expansion in powers of E" is a high-temperature expansion. The 
coefficients of the series 

were obtained by the connected-diagram perturbation method of Kadanoff and 
Kohmoto (1981). This method was originally devised for the calculation of the ground- 
state energy of a Hermitian many-particle Hamiltonian. Its application to the present 
case of a non-Hermitian Hamiltonian is straightforward. Since the eigenstates that 
correspond to AcO)(0) and Acl)(0) belong to different charge sectors they can be treated 
as ground states in the respective sectors. The coefficients a,(y), b,(y). n = 0,.  . . , 7  are 
rational functions of y 2  which are too extensive for publication but can be supplied 
on request. For the Potts model (y=O) the coefficients a,(O) can be found in the work 
of Elizur et a! (1979). In this case the analysis of the series is greatly facilitated by 
the fact that it is known to have a singularity at the self-dual point jLsd = 3. We 
calculated the [4/2], [3/3] and [2/4] Pade approximants to the logarithmic derivatives 
(dlog Pade approximants) of the series (3.2) for the mass gap for various values of y .  
From these we were able to locate the physical singularity i.,(y) corresponding to a 
phase transition by assuming that it evolves smoothly from j.sd as y is increased. The 
Pade approximants always contained unphysical singularities in the complex i plane. 
We employed an Euler transformation 

1 
1 + i b  

U=- (3.4) 

to shift them to a distance larger than uc = ( 1  + bj.,)-' from the origin. Tables 1 and 
2 show the results as obtained from the [4/2], [3/3] and [2/4] dlog Pade approximants 
to the Euler transformed series (3.2) in the range 0 I y I 2 . I., is the critical coupling 
and v, the critical exponent of the correlation length t,, t, = G-' N (2, - Ev)-"7 .  While 
the [4/2] approximant behaves sometimes irregularly-in one case it does not even 
exhibit a physical pole-the poles of the other two approximants are consistent with 
each other: three of the poles of the [2/4] approximant lie close to the poles of the 
[3/3] approximant; the additional pole lies on the real E. axis at a larger distance from 
the origin than E.,. 

The dlog Pade approximants to the series (3.3) for the wavenumber Q exhibit an 
unphysical pole on the negative E. axis which is closer to the origin than the physical 
pole and has a residue nearly twice as large as that of the physical pole. This behaviour 
makes it impossible to reliably determine the critical coupling E? (where Q vanishes) 
from these approximants. Adopting a result of the finite-size analysis (see $4) we 
set E.:"' = j.,, i.e. we identified the critical couplings of the mass gap and of the 
wavenumber, and calculated the dlog Pade approximants for the series 

? 

(E. - i,)Q(E.,y) = y(3. - &) 1 bn(y) i f l  
n=O 

(3.5) 
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Table 1. Positions of the poles of the respective dlog Pade approximants to the high- 
temperature series. These are approximants to the critical coupling &. 

2483 

O.oo00 
0.1500 
0.3000 
0.4500 
0.5236 
0.5764 
0.6435 
0.6747 
0.7045 

O.oo00 
0.1511 
0.3093 
0.4830 

0.6500 
0.7500 
0.8Ooo 
0.8500 

1/& 

0.6594 
0.71a 

b 

0.8014 
0.8491 
0.8602 
0.9110 
0.9352 
0.9595 

- 

0.6667 
0.6867 
0.7353 
0.8185 
0.8713 
0.9166 
0.9839 
1.019 
1.055 

0.6691 
0.6874 
0.7359 
0.8186 
0.8723 
0.9176 
0.9843 
1.019 
1.056 

a Intervening non-physical zero on the negative i axis around -0.345 
Only two complex conjugated roots exist. 

Table 2. Residues of the respective dlog Pade approximants at the pole positions of table 1. 
These are approximants to the correlation length exponent v , .  

v y (421 PA ~ $ 4 1  

O.oo00 
0.1500 
0.3000 
0.4500 
0.5236 
0.5764 
0.6435 
0.6747 
0.7045 

O.oo00 
0.1511 
0.3093 
0.4830 

0.6500 
0.7500 
0.8Ooo 
0.8500 

l / &  

0.7936 
1 .oa 

0.7610 
0.7573 
0.625 1 
0.61 11 
0.5983 
0.5851 

b - 

0.8380 
0.8456 
0.8292 
0.8437 
0.8733 
0.8989 
0.9554 
0.9887 
1.024 

0.8500 
0.8564 
0.83 13 
0.8478 
0.8743 
0.9039 
0.9574 
0.9894 
1.025 

a Intervening non-physical zero on the negative i. axis around -0.345 
Only two complex conjugated roots exist. 

at i. = 2,. From these we were able to extract the critical exponent p which describes 
how the wavenumber goes to zero as i. approaches Ac from below: 

- 
Q 2: (A, - jJP A < i., (3.6) 

The results are listed in table 3. We note that for a Pokrovsky-Talapov-type incommen- 
surate to commensurate transition should take the value 4 (Pokrovsky and Talapov 
1978, 1980). 

Presumably all of the above results become less and less reliable as y increases, be- 
cause then the critical coupling ,Ic increases beyond unity while the original expansion 
was around 1. = 0. Nevertheless we think it remarkable that the two critical indices 
v, and turn out to be different for all values of y .  This contradicts the previous 
finding (Duxbury et a1 1984) that the transition between the ferromagnetic and the 
incommensurate disordered state should be a chiral transition (Huse and Fisher 1982, 
1984). There is no direct sign of a Lifshitz point or for the existence of an incommen- 
surate floating phase in our series results. We think, however, that the decrease of B 
towards the Pokrovsky-Talapov value p = 0.5 (Pokrovsky and Talapov 1978, 1980) as 
y increases to y e 0.8 (see table 3) is a hint for a Lifshitz point around y 0.8. 
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Table 3. Values of the respective dlog Pade approximants to the high-temperature series 
taken at the estimates j.: for the critical coupling. These are approximants to the wavenum- 
ber exponent p. The entry for y = 0, where Q = 0, reflects a singularity in Q / y  (see formula 
(3.3)). 

O.oo00 
0.1500 
0.3000 
0.4500 
0.5236 
0.5764 
0.6435 
0.6747 
0.7045 

O.oo00 
0.1511 
0.3093 
0.4830 

0.6500 
0.7500 
0.8000 
0.8500 

l I J 3  

0.7000 0.7019 0.7293 2/3 
0.6821 0.6876 0.7099 0.687 
0.85a 0.6230 0.6420 0.736 
0.6145 0.5759 0.5955 0.819 
0.5959 0.5617 0.5823 0.872 
0.5864 0.5555 0.5770 0.917 
0.5821 0.5545 0.5801 0.984 
0.5829 0.5483 0.5843 1.02 
0.5880 0.6346 0.5920 1.06 

a Zero on the negative i axis with large residuum. 

scaling analysis 

4.1. Paramagnetic to commensurate transition 

Another method of obtaining the correlation length 5 ,  and the wavenumber Q is to 
numerically diagonalise the Hamiltonian (2.4) for finite chain lengths. The critical 
properties can then be estimated with the use of finite-size scaling (see e.g. Nightingale 
1976, Barber 1983). 

The sizes of the matrices which have to be diagonalised increases rapidly as 3’ 
with the chain length N .  We therefore utilised all possible symmetries (translational 
invariance, Z3 charge conservation) to block-diagonalise the Hamiltonian. Even so, 
in order to be able to scan reliably through a two-dimensional parameter space we 
had to modify a Lanczos method for complex symmetric matrices (Lanczos 1950, 
Paige 1972, Cullum and Willoughby 1985, 1986) to be able to go to chain lengths of 
N = 10. The computational effort, however, was greatly facilitated by the fact that the 
desired eigenvalues AC’(0) and AC’(0) happen to lie on the very edge of the eigenvalue 
spectrum of the respective block. This means that these are the eigenvalues for which 
the above-mentioned diagonalisation procedure is supposed to converge fastest (see 
Cullum and Willoughby 1986).The block diagonalisation of the N = 10 chain took 
around 80000 CPU seconds on a Cyber 990. After this had been done, however, 
obtaining an eigenvalue for the N = 10 chain was done in only about 300 CPU seconds. 

As usual in finite-size scaling techniques we use the relation 

to obtain estimates for the finite-size critical points E . c ~  and the correlation length 
exponents v, and v,. A value of a(’) # 1 indicates anisotropic scaling (Domany and 
Schaub 1984). In the case of a modulated system one expects the wavevector Q to 
suffice a similar scaling relation 
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describing how the wavevector goes to zero as the coupling constant approaches the 
ferromagnetic regime. In order to allow for anisotropic scaling we used the equations 

(4.3) ( 1 )  YvO.c,v) = Y N + l ( & , )  = 0, 

and 

where 

(4.5) 

to obtain finite-size estimates for the critical coupling of the correlation length j.,N and 
for the critical coupling of the wavenumber >-FT. These finite-size estimates were then 
extrapolated using the Van den Broeck-Schwartz (vB?) extrapolation technique (Van 
den Broeck and Schwartz 1979, Barber 1983) with a value of ZL = 1 (for an example 
see table 4). Further information can be obtained from the critical exponents v: and 
ti,  for which finite-size estimates were calculated through 

l/V,N = t (ZN + ZN+I) + (4.6a) 

with 

(4.66) 

and through a similar formula for in which dGy/di. goes over into dQ,v/d/l and 
into 0:'. In contrast to the work by Vescan er a1 (1986) the quantities GN, Q N ,  

ZN and @,$'2' were calculated at the extrapolated values of the bulk critical coupling 
i., and iFrr0 and not at the finite-size critical couplings. Both procedures give the same 
answer in the infinite-system limit, but the finite-size estimates for the exponents taken 
at the bulk critical coupling seem to behave more regularly. 

Table 4. VBS table for 0"' at a value of tp=o.15. The finite-size estimates were taken at 
the extrapolated bulk critical coupling i, = 0.6855. 

~~ 

1.038 078 2 
1.016 422 3 0.991 319 44 
1.004 796 1 0.986 119 45 0.980 740 03 
0.997 630 55 0.983 039 30 0.979 447 37 0.978 818 63 
0.992 824 93 0.981 168 48 0.978 967 91 
0.989 422 17 0.980 061 26 
0.986 926 58 

From plots of NG.v for various lattice sizes we deduce the existence of a conven- 
tional phase transition for values of y which are less than 1/& with an anisotropy 
parameter of about one (see figure 3). Around y = l /&  a new structure begins to 
develop in the scaled mass gap NGN (see figure 4(a)) which becomes more pronounced 
for larger values of y (see figures 4(h) and 4(c)). Similar structures have previously been 
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0.50 0.65 0.70 0.75 0.80 

A 

Figure 3. The scaled mass gap NG,v for y=0.2027 for lattice sizes N = 3,. . . ,8. The lines 
are interpolated between data points which were 0.015 units of the 2. axis apart. 

seen in the function Y, for various models with competing interactions (Duxbury er a1 
1984, Domany and Schaub 1984, Beale er al 1985, Oitmaa er al 1987) and have been 
interpreted as evidence for the occurrence of an incommensurate floating phase in these 
models. The melting line of the floating phase was then analysed using conventional 
finite-size scaling, i.e. using (4.1) for the finite-size quantities. This procedure must fail 
if the melting transition of the floating phase is of the Kosterlitz-Thouless type with 
an essential singularity of (,(I) at 2 = 0. An appropriate finite-size scaling analysis in 
this regime of the coupling constant will be given below. 

The scaling of the wavevector Q is not expected to be influenced qualitatively by 
the existence of a floating phase and should therefore obey the scaling relation (4.2) 
in the whole range of the chirality parameter y .  This works out well for small values 
of y (see figure 5 )  but for larger values of y an increasing even-odd asymmetry in the 
scaling function for finite lattices of length N renders a conventional finite-size analysis 
difficult. We therefore extrapolated the finite-size wavevectors QN to Q , ( N )  using the 
Bulirsch-Stoer (BS) algorithm (Bulirsch and Stoer 1964) and fitted these data to 

giving = 0.5 for both y = 1.96 and y = 5.7979. 

Table 5. The extrapolated finite-size data following from the application of formulae (4.3), 
(4.5), (4.6a) and (4.66). The system sizes considered were in the range N = 3,. . . , l o .  The 
finite-size estimates for the exponents and 0"' were calculated at the extrapolated critical 
coupling j,. The indicated errors arise from the difference of the last two estimates in the 
VBS procedure and are therefore to be taken with care. 

w Y i, from (4.3) ($1' .Y Y ,  = v,@(') 

0.1500 0.1511 0.6855 f 1.1 x 0.9788 k 6.0 x 0.8432 f 2.5 x 0.8250 2 3.7 x 
0.3000 0.3093 0.7436 k 3.4 x 0.8906 f 1.4 x 0.9062 f 1.5 x 0.8071 f 1.7 x 
0.4500 0.4830 0.8399 f 1.4 x 0.7762 2.2 x 0.9508 8.0 x 0.7380 2 1.1 x 
0.5236 I / &  0.9034 2 3.2 x lo-' 0.721 1 i 4.0 x lo-' 0.9660 f 1.2 x 0.6965 k 1.3 x 

The results of the finite-size scaling analysis are summarised in table 5 for the 
scaling of the correlation length and in table 6 for the scaling of the wavevector. Up 
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Figure 5. The scaled wavevector N Q N  for y = 0.2027 for lattice sizes N = 3 , .  . .  ,8. The 
lines are interpolated between data points which were 0.015 units of the E. axis apart 

to y "- 1 / d  the correlation length scales at the same value of the coupling A as the 
wavenumber which is also consistent with the series results of the previous section. 
The results check with those of Vescan et a1 (1986) at y = 1 / d  if one multiplies their 
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coupling constant A by a factor of (1 + y 2 ) .  The anisotropy parameter decreases 
from the isotropic value 1 at y = 0 as y increases, indicating that the system is not 
conformally invariant in this region. The other anisotropy parameter shows similar 
behaviour but starts off at a lower value. 

Table 6. The extrapolated finite-size data following from the application of formulae (4.4), 
(4.5), (4.6a) and (4.6b). The system sizes considered were in the range N = 3,. . . , 10. The 
finite-size estimates for the exponents and @(*I were calculated at the extrapolated critical 
coupling &, The indicated errors arise from the difference of the last two estimates in the 
VBS procedure and are therefore to be taken with care. 

0.1500 0.151 1 0.6854 f 1.0 x 0.7790 & 2.1 x 0.8185 & 1.7 x 0.6376 f 1.8 x lo-* 
0.3000 0.3093 0.7429 & 2.8 x 0.7334 f 9.2 x 0.8393 & 4.5 x 0.6155 f 3.1 x 
0.4500 0.4830 0.8380 1.9 x 0.6779 f 3.1 x 0.8837 f 4.5 x 0.5990 6.0 x 

0.5236 l / &  0.9030 f 1.2 x 0.6450 f 1.0 x 0.9008 f 4.1 x lo-* 0.5810 f 4.3 x 

The correlation length exponent v, rises regularly from the three-state Potts value 
I ' ,~  = v, = 2 at y = 0. With the help of we can then calculate v, and compare this 
with the series results. This fails the more the closer y is to the expected Lifshitz point 
around y = l/&. A similar discrepancy shows up if we compare v ,  with v.: which 
should be equal, because there should be only one critical length in the x direction. 
The last two findings do not depend on the extrapolation method used to obtain the 
exponents. We think this is an indication that finite-size scaling does not give reliable 
information around a Lifshitz point with the lattice sizes obtainable at the moment. 
Alternatively one could assume that the floating phase stretches out to y = 0 in a 
narrow strip and that this causes problems with the conventional scaling analysis. The 
behaviour of the wavenumber exponent F ,  however, which monotonically decreases 
towards the Pokrovsky-Talapov value p = 0.5 and which, for y < 1/&, is consistently 
obtained both by the use of the high-temperature series and through finite-size scaling, 
points towards the existence of a Lifshitz point around y = 1/&. This result is further 
substantiated by the appearance of loops in the mass gap around that value of y (see 
figures 4(a-c)). 

4.2.  The incommensurate floating phase 

In the plots of the mass gap N G N  (see figures 4(a-c)) for y > l /&  the correlation 
length is seen to scale very nicely-especially for y = 5.7979-in an extended region of 
the coupling constant which increases rapidly as the chirality y increases. This scaling, 
which has not been found in earlier numerical studies of systems with competing 
interactions (Duxbury et a1 1984, Domany and Schaub 1984, Beale et a1 1985, Oitmaa 
et a1 1987) clearly indicates a critical region and therefore the existence of a phase with 
algebraically decaying correlations. Just below the ferromagnetic phase transition line 
,pro (see later) we note the appearance of a peak whose height increases with the size 
of the system. Thus it appears that the system mimics a paramagnetic phase between 
the ferromagnetic phase and the floating phase. This can be explained in the following 
way. The correlation length of the infinite system is infinite within the floating phase. 
Closely above the ferromagnetic domain boundary the density of walls is very low, 
i.e. the walls are very far apart. For a strip of finite width, however, the correlation 
length is finite and can-close to the ferromagnetic boundary-become smaller than the 
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average wall-to-wall distance. When this happens the results of a finite-size calculation 
will simulate a system of non-interacting domain walls and therefore show an artificial 
paramagnetic phase. If one increases the system size this effect will eventually saturate. 
We obtained further confirmation for this point of view by plotting N G N  for a constant 
value of the wavenumber Q, i.e. that we solved the equation QN [ y ~  (A), 4 = constant 
for a given system size N ,  then extrapolated the different curves y~(1 . )  to ym( i )  (figure 
6) and calculated G N k c o ( I ) ,  I,] (figure 7). Since the wall density for this case remains 
at a relatively high constant value, one never reaches the region where the peak in the 
mass gap appears. The rise in the value of the mass gap with increasing I (see figures 
4(a-c)) is caused by a temperature-dependent prefactor in front of the Hamiltonian 
(2.4) (see $5) .  

5- 

L- 

3 -  
A 

1 -  

1 -  

Y 
5.0 5 5  6 0  6 5  7 0  

0. 

Figure 6. The curves y~ (i.) for Q = 5.0 and for chain 
lengths N = 3, . . . ,  10 and the extrapolated curve 
Y, (4. 

I 
N.3 _-- t 

- . . . . . - 
lo/ ........... ! 

6 _ _ - - - -  I \  

0 1 2 3 L i  
i. 

Figure 7. The scaled mass gap N G N  for Q = 5.0 
for lattice sizes N = 3,. . . , lo.  The lines are interpo- 
lated betweer. data points taken at the extrapolated 
coordinates in the y - i  plane of figure 6 .  

In the previous paragraph we argued qualitatively for the existence of a floating 
phase through pictures of the scaled mass gap. We shall now assume that this phase 
is in fact a Kosterlitz-Thouless phase (Kosterlitz and Thouless 1973, Kosterlitz 1974) 
and shall try to verify this assumption by a finite-size scaling analysis. At criticality, i.e. 
at the melting line of the floating phase, the mass gap should thus develop an essential 
singularity of the form 

Introducing finite-size estimates A:: for the critical coupling AFT we obtain for 
finite N $ 1 

Finite-size scaling implies that GN(A$) 'v N-@ . Therefore we find from (4.9) 

(4.9) 

(4.10) 
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The last two equations lead to a scaling form for the mass gap at the KT transition 
given by 

We take the minima of the mass gap as estimates for the finite-size critical couplings 
(see Hamer and Barber 1981) and perform a three-parameter fit to 

].tin = A:: = AFT - Cl/(lnN)'/" N = 3,. .., 10 (4.12) 

for the parameters C1 and (T. The results for ArT and cr for y = 1.96, y = 5.79 and 
Q = constant = 5.0 are summarised in table 7 (for y = 1.04 the analysis could not be 
carried out since for system sizes up to N = 9 there is no minimum in the mass gap). 
The results for ibrT are consistent with one another, i.e. ibrT rises monotonically with 
increasing y.  The exponent U turns out to be independent of y and agrees with the KT 
value cr = I. 1 

Table 7. The critical parameters of the melting transition from the modulated floating 
phase to the modulated paramagnetic phase. The indicated errors were obtained from the 
variation of the extrapolated values with the system sizes considered and are therefore 
rather subjective. 

w = 1.1, y = 1.96 0.499 F 0.07 
Q = 5.0, yQ=50(i.FT) z 5.4 1.84 0.19 0.558 i. 0.10 
w = 1.4, y = 5.1919 1.96 f 0.24 0.525 0.12 

1.38 i. 0.20 

5. Conformal invariance-the exponent q 

The theory of the KT transition normally allows the conclusion that the system is 
conformally invariant in the KT phase, i.e. the classical fields have to satisfy the 
Laplace equation. The uniaxial oscillating factor in the correlation function (1.3) shows 
that the cc3 model-as it stands-is certainly not conformally invariant at criticality. 
The deviation of the anisotropy parameter 0 from unity that was previously observed 
for y I l / f i  is a further sign that the model is not conformally invariant. On the other 
hand, for large values of y we do find a phase with algebraically decaying correlations 
over an extended regime of the coupling constant and a behaviour at the transition 
to the paramagnetic phase which agrees well with the predictions of KT theory. By 
plotting finite-size approximants YN to 0 (see figure 8) for Q = constant = 5.0, where a 
wide KT phase exists, we notice that these fluctuate around unity within the KT phase. 
Thus for large values of y the concept of conformal invariance should be applicable 
to the cC3 model after a suitable modification has been made. Instead of the original 
spin variables (see (1.2)) one introduces the variables (Pokrovsky and Talapov 1978, 
1980, Villain and Bak 1981) 

S'(R) = exp [i ( F n R  - Q R - ) ]  (5.1) 
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in which the regular oscillations with wavenumber Q have been divided out so that 
their correlations decay monotonically. 

Since, as we have found, scaling is isotropic in a certain area of the y- l  plane, i.e. 
<, N 5, N N for a strip of width N ,  we conclude that the CC3 model formulated in terms 
of the variables S’(R) is conformally invariant in that area. This allows us to derive the 
exponent q in (5 .2)  and in (1.3) from finite-size approximants to the correlation length 
5 = G-I (see e.g. Cardy 1987). The adopted procedure follows closely that derived by 
von Gehlen et a1 (1985).  

0 1 2 3 4 
x 

Figure 8. The function YN from formula (4.5) for constant wavevector Q = 5.0. The lines 
are interpolated between data points taken at the extrapolated coordinates in the y - l  plane 
of figure 6. 

At the critical point in a conformally invariant system the mass gap G N  should 
directly give the order4isorder exponent q multiplied by a temperature-dependent 
prefactor €(A) 

lim N G N  = ne(l)q.  (5.3) 
N-CC 

The factor .(A) is given by (von Gehlen et a1 1985) 

N lim -Ks N Re (Ai’(1) - Ai’(O)} = 2 n e ( i ) .  (5.4) 

We did not use (5.4) to calculate €(A), because (5 .4)  was derived in the limit of large 

(5.5) 

e ( l ) ’p2 /G2 ,  so that 

(G2 + ~ ( l ) ~ p ~ ) ’ / ~  N e(A)p 

where p is the momentum, p = 2 n k / N .  Even for our largest systems ( N  = 10) this is 
not even approximately valid. Thus we used the unexpanded version of (5.4) 

lim N [Re (Ag’(1)}2 - Re {Ai’(O)}’ - 2A$)(O)Re (Ag’(1) - Ai)(0)}]1’2 = 2 x 4 2 ) .  (5.6) 
N-UZ 
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)'= 5.1979 
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Figure 9. The exponent q as a function of 1 given by conformal invariance as described in 
the text (a) for y=5.7979 and ( b )  for Q = constant = 5.0. 

7 was then calculated by extrapolating finite-size estimates of the ratio of (5.3) over 
(5.6). 

In order to be able to predefine the convergence rate, we did not use VBS ap- 
proximants but rather the method proposed by Bulirsch and Stoer (1964) (see also 
Henkel and Schutz 1988). The most consistent data were obtained with w = 1, i.e. 
that the finite-size estimates converged as 1,". The results for y = 5.79 and for 
Q = constant = 5.0 are shown in figures 9(a) and (b) .  The error bars were obtained 
as the difference between the last BS estimate and the BS estimate of the second last 
generation. The large error bars in the regime of the floating phase arise from the 
fact that the finite-size data are still relatively far apart for the system sizes we could 
obtain. The extrapolation was further obstructed by an even-odd asymmetry (see also 
figure 4(c) for N G N  and figure 8 for e), which arises from similar excitations for the 
quantum chain for the corresponding even-odd pair. In spite of all these difficulties 
in the extrapolation procedure we think that the continuous behaviour of the extrap- 
olated values gives rise to some confidence in their quantitative behaviour. Both parts 
of figure 9 show a decrease in the value of q to a minimal value of around 2/9 which 
agrees with the predicted value 2/q2 (Schulz 1980, 1983, Ostlund 1981, Haldane et al 
1983) where q is the number of spin states. For y = 5.79, q rises again for increasing 
values of the coupling constant, whereas for the Q = constant case q seems to remain 
rather constant. This difference is probably due to the finite-size effects (see above) 
close to the ferromagnetic phase boundary. From the line q(%) = we were able to 
obtain guesses for the value of the coupling constant at the KT transition. These turned 
out consistently higher than the values of the critical coupling obtained from finite-size 
scaling (see table 7). We explain this discrepancy by the difficulty of fitting finite-size 
data to a logarithmic scaling law with a high degree of accuracy. 

6. Summary 

We have shown that the transfer matrix of the two-dimensional chiral clock model 
can be represented as the exponential of a one-dimensional non-Hermitian quantum 
Hamiltonian. The parameter that controls the non-Hermiticity of the quantum Hamil- 
tonian corresponds to the chirality parameter of the original model. The derivation 
of the Hamiltonian suggests that for small chirality, y I 1/& there is a direct phase 
transition from the spatially modulated disordered phase to the ferromagnetic phase of 
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the chiral clock model. For large chirality an incommensurate floating phase intervenes 
between these two phases. 

For y I l / , h  we determined the critical coupling &, the critical exponents v, and 
v ,  of the correlation lengths 5 ,  and 5,  along the two lattice directions and the critical 
exponent of the wavevector Q of the modulation of the disordered phase. This has 
been done by considering a series expansion of the eigenvalues of the Hamiltonian and 
by finite-size scaling. From finite-size scaling we find that for y I l / f i  the correlation 
lengths and the wavenumber scale at the same coupling &, This agrees with the 
suggestion that there be only one phase transition in this range of chirality. Within the 
- achieved accuracy the two techniques yield identical values for p, which varies from 
p = 0.65 for y = 0.1511 to p 2: 0.57 for y = l/&. According to finite-size scaling 
the system scales anisotropically for any finite chirality y 5 l/&. The anisotropy 

= v , / v ,  develops continuously as y increases and reaches a value of about 0.72 at 
y = l/&, Howes (1983), who argued for a Lifshitz point at finite chirality, conjectured 
that the correlation length exponents take the values v, = 1, v ,  = 3 at that point. 
Our values at y = l/&, v ,  = 0.97, v, 2: 0.7, compare favourably with this conjecture. 
From the series expansion, however, we find a different behaviour of v,. Also the 
values obtained for v, from correlation length scaling and from wavevector scaling 
differ significantly. Thus, in our opinion, the possibility that the floating phase extends 
to y = 0 in a very narrow strip between the disordered and the ferromagnetic phase, 
i.e. that there is no Lifshitz point for a finite chirality, cannot definitely be ruled out. 

For y > l / &  we find clear evidence for the occurrence of an incommensurate 
floating phase: the mass gap scales isotropically in an extended region of the phase 
diagram. The loop structure in the scaling function YN which has previously been 
interpreted as a qualitative indication for such a phase is presumably induced by 
finite-size effects which artificially make the wavelength of the modulation longer than 
the correlation length for the finite system. Conventional finite-size scaling analysis, 
which relies on the scaling of a critical property of the system at one single value 
of the coupling, fails here due the existence of an extended critical region containing 
the floating phase. An appropriate finite-size scaling analysis, however, confirms that 
the melting of the floating phase occurs via a Kosterlitz-Thouless transition. At the 
transition to the ferromagnetic phase the wavevector of the modulation of the floating 
phase is found to vanish with a critical exponent p = 0.5 as predicted by Pokrovsky 
and Talapov (1978, 1980). 

The isotropic scaling of 5 in a finite region of the y - i  plane suggests that the 
model should be conformally invariant when formulated in appropriately defined new 
spin variables. Exploiting the consequences of conformal invariance we extracted the 
critical exponent q from finite-size approximants of the mass gap of the Hamiltonian. 
The results are consistent with our view that the floating phase of the chiral clock 
model is a Kosterlitz-Thouless phase. 
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